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Abstract-A turbine blade is modelled as a uniform isotropic prismatic beam of general cross
section and "setting angle" rotating about one end, and is analysed according to the linear theory
of elasticity. A semi-inverse solution is presented which reduces the three-dimensional problem to
one of two dimensions, and explicit stress and strain components given for the mathematically
amenable elliptic cross-section. As expected, the planar stresses (1", (I, and f., arising from the two
dimensional problem are found to be small. For the general section, the theory predicts small
curvature of the blade centre line, and a twisting moment which tends to reduce the "angle of set".

I. INTRODUCTION

The determination ofstress and strain fields in prismatic rods ofarbitrary cross-section due
to forces applied at the ends of the rod only, is known as Saint-Venant's problem. Solutions
have been obtained for tension, pure bending, torsion and bending due to a terminal
shearing force (see, e.g. Love[l]); apart from their direct application, these solutions provide
justification and limitations to the technical theories used in "strength ofmaterials". Exact
solutions have also been obtained for body force gravity loadings of rods and beams
producing longitudinal extension (see Sokolnikoff[2], Chap. 4) and bending (see Love[l],
Chap. 16). In principle, exact solutions can be obtained for any case in which the forces
applied to the beam along its length can be represented by rational integral functions of
the beam axial coordinate[3].

In this paper, the authors present a semi-inverse solution for the centrifugal body force
loading in a prismatic beam rotating about any axis through one end perpendicular to the
longitudinal centroidal axis, as shown in Fig. I, where the section principal axes (x', y') are
inclined to the axis of rotation and tangential direction (x, y) with a setting angle p; the z
axis coincides with the beam centroidal axis.

For a general asymmetric cross-section the theory predicts curvature of the blade
centre line; while this effect is small, the authors have found no previous reference in the
literature. When the x-axis of rotation is not a principal axis of the section, there is also a
twisting moment, which for an airfoil section would tend to turn the chord into the plane
of rotation thereby reducing the angle of set.

A complete solution for the mathematically amenable elliptic cross-section is given,
from which the relative magnitudes of the various stress components are compared; as
expected the planar (lx, uyand 't'xy components are found to be small, as is variation of the
longitudinal stress U; over the cross-section.

As is usual, the derived solution satisfies the boundary conditions on the surface
generators of the beam; over the free end, the stress free condition is satisfied on a
macroscopic level by requiring the stress resultants to be zero. Here we appeal to Saint
Venant's principle and argue, as at the root section, that these shortcomings will produce
only local differences.
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Compatibility equations, eqns (3a)-(3c), become

(lOa-<:)

and eqns (4a)-(4c) become

02ex =0
oyoz
02Sy = 0

OXOZ

02S, 02<jJ
--=8,--oxoy oxoy'

Integration of eqn (lie) and comparison with eqn (7) requires

Now from Hooke's laws (5c)

when differentiated with respect to z, gives

Oq, = EOs,
OZ OZ

since

Oqx = Oqy = 0
oz OZ

and from eqn (7) we have

oq, as, 2
-=E-= -pO z.oz oz

(lla-<:)

Thus the equilibrium equation, eqn (8c), requires V2<jJ = O.
Substituting the assumed shear stresses t.x, and t y , into boundary condition (2c) it is

evident that <jJ is the Saint-Venant torsion function.
Hooke's laws, eqns (Sa) and (Sb), differentiated twice with respect to z, give

Hence compatibility equations, eqns (lOb) and (tOe), become



but from eqn (7) we have

and

from which we conclude
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or

/2(Y) =cy+d.
Since we already have constant and linear terms in en which are as yet undetermined, the
above are incorporated, and we put/I(X) = /2(Y) =o.

The longitudinal stress is now written as

To evaluate the constant to, we construct the tensile force

II A02 v 0
2 IIT= (1: dx dy EAto +T(L 2

-Z
2

) - -;-(lI<+ly)+E8 1 cP dx dy

+vII«(11<+(1,) dx dy.

Now the last integral may be expressed as

f f«(1X+(1y) dx dy = f f {:x (xux+YTXy)+~ (XtXy+Y(11)} dx dy

-ff{x(~; +~;)+ye;;+~;)} dx dy.

The first integral transforms to the line integral
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which is zero by virtue of boundary conditions (2a) and (2b). Employing the equilibrium
equations, eqns (8a) and (8b), we have from the second integral

f f«jx+(jy) dx dy = f f {GOJx(~~ - Y)+GOlY(~~ + X)+ P02y2} dx dy

= GO I f f(x ~~ + y~~) dx dy+p02/x'

Now introduce the conjugate function t/J via the Cauchy-Riemann equations

and

f f (x ~~ +Y~~) dx dy = f f {:y<xt/J) - :x (yt/J)} dx dy

= - i {(xt/J) dx+(yt/J) dy}

since t/J = ~(X2+ y2) on the boundary.
Transforming back to an area integral the above becomes

ff{:y((X
2
;y2)X)_ :x ((X

2
;y2)y)}dxdY=O

hence

We also write

from which the tensile force may be written as

Now we require the tensile force to be zero at the free end z = L which gives

(12)
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VpQ2
80 = c6 l - 2EA (Ix-Iy)

and hence

as expected from elementary theory.
To evaluate the constants "0 and "0 we construct the bending moments

1671

(13)

My = - ffxu, dx dy.

Now

II{ p02 2 2 , 2 Vp02 2 2
Mx = EeoY+ 2(£ -z )y-E"oxy-E"oY - -2-(x +Y)y

+E6. tPy+V(ux +uy )y} dx dy

or

+E6. fftPy dx dy+vff(ux+uy)y dx dy.

Now the last integral may be written as

the first integral transforms to the line integral

which is zero by virtue of boundary conditions (2a) and (2b), whilst the second integral
yields, from eqns (8a) and (8b)
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Again introducing the conjugate function t/J via the Cauchy-Riemann equations, and the
Prandtl stress function 'I' through the relationship

and after some manipulation we find

and hence we have for the bending moment

Similarly we find for the bending moment

, Vp02 II 2 2 IIMy = EKoIy+ EKoIxy + -2- (x +y )x dx dy-E0 1 tJ>x dx dy

-v II(O'x+O'y)X dx dy

and with

the moment becomes

-E0 1[IItJ>x dx dy+ 1:v IIy'P dx dyJ.
Now since the bending moments Mx and My are seen to be independent of the axial
coordinate z, and are known to be zero at the tip z = L we must have Mx = My = 0; this
allows the constants Ko and Ko (curvatures) to be written as

Vp02 [IyII 2 I xy II (X2
- y2) dx d ]-~ D xydxdY-D -2- x y (14a, b)
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Now the 8. coefficients in eqns (14) can be recognized as the centre of flexure (shear
centre) coordinates for a centroidal non-principal coordinate system[4]. i.e.

XF =ffe};x _l;)l/J dx dy+ I:vff(/~ + 1;)'1' dx dy

ff( /xx IXYy)A. d d v ff(/xyX lXY)\II dx dYF= ---." X y+-- --+- T Y
D D I+v D D

and the expressions for the curvatures reduce to

To evaluate the constant 8h we construct the twisting moment

M z =ff(XTyz - ytxz) dx dy

and hence the rate of change of twisting moment

which is evaluated in two ways. Firstly we employ eqns (6) to find

aM. ff( al/J al/J 2 2) daz = G8. xay - y ax +x+y dx y

or

where

is the torsion constant.
Secondly we employ the equilibrium equations, eqns (Ia) and (Ib), to obtain

(lSa, b)

(l6a, b)
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oMz n2 ff dx d ff{ (OUx OtXY ) (otXY OUY)} dx d-= -pu xy y+ Y -+- -X -+- y.
fu ~ ~ ~ ~

The second area integral may be transformed to the line integral

which is zero by virtue of the boundary conditions, hence

oMz 2& = -pO Ixy = GJ(J.

and

(JI
= _ p02Ixy

GJ . (17)

Now since the twisting moment Mz is zero at the tip z = L, we find Mz = p02Ixy(L-z).
Before consideration of the two-dimensional problem for any particular cross-section

we now summarize the stress and strain components as

o2<l>

Ux = oy2 -G(J.(4>-xy)

02<l> p02y 2
(1y = ox2 -G(JI(4>+xy)- -2-

p02 2 2 I Vp02 [Iy-Ix 2 2 ]
Uz = 2(L -z )-EKox-EKoY+ -2- --A- -(x +y)

(
02<l> 02<l> p02y2)

+V ox2 + oy2 - -2- +E(J.c+2G(J.4>

o2<l>

t xy = - ox oy

(
04) ) p02Ixy (04))txz=G(Jj(z-L) ox-y =-J-(L-z) ox-y

t y: = G(JI(z-L) (~~ +x) = PO}x
y
(L-z) (~~ +x)

Vp02 2 2 V2p02 ((Iy-Ix) 2 2 )
ex = - 2E (L -Z )+VKOX+VKoY- 2E A -(x +Y)

+ (l-v2
) 02<l> _ v(1 +v) (02<l> _ p02y2) + (J.xy -v(JjC- (J.4>

E oy2 E ox2 2 2 2

Vp02 2 V2p02 (Iy-Ix 2 2 )
ey = - 2E (L 2-z )+VKoX+VKoY- 2E ~ -(x +y)

+ (l-v 2) (02<l> _ p02y2) _ v(l +V) 024> _ (J.xy -V(J.C- (J14>
E ox2 2 E oy2 2 2
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p02 2 2 , Vp02 [(Iy-Ix) 2 2)J e (,J, )ez = 2£ (L -z )-KoX-KoY+ 2£ A -(x +y + I .,,+c

1 a2~

'Yxy = - GiJxiJy

2.3. Two-dimensional problem
The compatibility equation, eqn (9a), yields the biharmonic equation

Boundary conditions (18) and (2b) become, on putting I = dYlds, m = -dxlds

3. EXAMPLE-ELLIYTIC CROSS-SEcrION BEAM

1675

(18a-1)

(19)

(20)

3.1.
We consider the ellipse x'2Ia2+y,2Ib2_1 =0, which has principal axes inclined at

setting angle p. The boundary equation may be written as

where

c. = a2sin2 P+b2 cos2 P

C2 = a2 cos2 P+b2 sin2 P

C3 =2(b 2 _a2
) sin p cos p.

B

Y'

f'IIF----J'--..... y

X'
x

Fig. 2. Elliptic cross-section beam with arbitrary "angle of set" p.
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The Saint-Venant torsion function
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(
a

2
-b2)

<p(x',y') = - 02 +b2 x'y'

becomes

and for the stress function we find

(21)

and hence stresses

A
ax = 4' ~[(2C2Y+C3X)2+2c2B(x,y)]

A p02
ay = 4' ~[(2CIX+C3y)2+2cIB(x,y)]- 2a2b2CIB(x,y)

az = p~2 (L 2 _Z 2)+ Vp~2 (C2~CI) _(X2+ y2»)

O+v)(a2+b2) 2 vA 2
+ 4a 2b2 pO C3<P(X,y)+ 4~«2c2Y+C3X)

where

p02

A = a2b2(3a4 +2a2b2 +3b4)

(23a-f)
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Table I

Stress magnitudes
Setting

T,,/ii, Tyz/U,angle P (1.,la, u,/a, T,,/a, u,lii,
(deg.) Location x 100% x 100% x 100% x 100% x 100% x 100%

A 0 3.96 0 100.66 0 0
0 B 0.16 0 0 97.72 0 0

30
A 0.74 2.20 -1.27 100.58 26.0 -45.0
B 0.08 0.03 0.05 97.9 9.0 5.2

45 A 0.96 0.96 -0.96 100.50 42.4 -42.4
B 0.04 0.04 0.04 98.15 8.5 8.5

90
A -0.09 0 0 100.30 0 0
B 0 -0.004 0 98.60 0 0

3.2. Comparison of stress magnitudes
Stresses have been calculated at several locations on the boundary surface of the ellipse

with various setting angles p, and comparison made with the average of the longitudinal
stress (Jz at the root z = L, i.e. iiz = p02L 2/2. A selection of these results is shown in Table
I above.

Stresses (J.. Txz and Tyz all have their maximum values at the root z = 0, and are all zero
at the tip z = L; since (Jz decreases with Z2, whereas Txz and Tyz decrease linearly with z, the
above values ofT:xz/iiz and Tyz/iiz will be lower at other sections along the beam, i.e. L > z > O.
Clearly Txz and Tyz are of considerable magnitude and, as expected, have maximum values
on the surface closest to the centroid.

The planar stresses (Jx, (Jy and Txy are independent of z, and thus would assume greater
proportion of (J: for L > z > 0; again the maximum boundary value appears to occur
closest to the centroid.

Due to the symmetry of the section in this example, the centre of flexure coincides with
the centroid, and the curvatures "0 and "0 are zero; thus the variation in (Jz over the root
section indicated by (Jz/iiz appears to be caused by the distortion of the initially plane cross
section into a paraboloid of revolution together with a contribution from V(Jx and v(J,. For
an asymmetric section involving bending, it is thought that the variation in (Jz would be
greater.

4. CONCLUSION

The present theory provides an exact linear elasticity solution for the centrifugal body
force loading ofa prismatic isotropic beam ofgeneral cross-section rotating about one end;
complete determination of stress and strain components requires a knowledge of the Saint
Venant torsion function and solution of a two-dimensional biharmonic boundary value
problem for the section. The theory predicts extensional, bending and torsional stresses and
displacements; for a beam of elliptic cross-section the in-plane stresses «(Jx, (Jy and TXy) are
found to be small.

Apart from classical interest it is thought the theory will supplement computational
work by providing an exact solution for a simple turbine blade model for the purpose of
validation and understanding of numerical predictions.
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